Active spanning trees and Schramm-Loewner evolution
نویسندگان
چکیده
منابع مشابه
Lectures on Schramm–Loewner Evolution
These notes are based on a course given to Masters students in Cambridge. Their scope is the basic theory of Schramm–Loewner evolution, together with some underlying and related theory for conformal maps and complex Brownian motion. The structure of the notes is influenced by our attempt to make the material accessible to students having a working knowledge of basic martingale theory and Itô ca...
متن کاملSchramm-Loewner evolution and Liouville quantum gravity.
We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal w...
متن کاملShortest path and Schramm-Loewner Evolution
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically...
متن کاملScaling limits and the Schramm-Loewner evolution
These notes are from my mini-courses given at the PIMS summer school in 2010 at the University of Washington and at the Cornell probability summer school in 2011. The goal was to give an introduction to the Schramm-Loewner evolution to graduate students with background in probability. This is not intended to be a comprehensive survey of SLE. Received December 2011. This is a combination of note...
متن کاملSix-vertex model and Schramm-Loewner evolution.
Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SLE_{κ}, Schramm-Loewner evolution wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2016
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.93.062121